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Abstract

There has been much research on codes over Z
4
, sometimes called quaternary codes,

for over a decade. Yet, no database is available for best known quaternary codes.
This work introduces a new database for quaternary codes. It also presents a new
search algorithm called genetic code search (GCS), as well as new quaternary
codes obtained by existing and new search methods.
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1. INTRODUCTION

One of the main problems of coding theory is to construct codes with best possible parameters.
There are databases of best known codes over small finite fields. For many years the online
table [9] has been the primary source of the records of the best known codes over small fields.
Recently, it is announced that this table is discontinued due to the existence of [15] which often
has more explicit information on constructions. The computer algebra system MAGMA [8]
has such a database too. Moreover, a table of best known binary non-linear codes is available
at [18].

For over a decade there has been intensive research on codes over Z
4
, integers modulo

4, sometimes called quaternary codes. The term “quaternary code” has been used both for
codes over Z

4
 and for codes over F

4
, the finite field with 4 elements. In this paper, we shall use

the term exclusively for Z
4
 codes. Among other results, some good quaternary codes have

been constructed [10],[7],[23], and [5]. Self-dual codes over Z
4
 of length up to 9 are classified

in [11], and this is extended to length 15 in [14] (16 for Type II codes in [20]). Rains has
classified optimal self-dual codes over Z

4
 in [22]. A large number of self-orthogonal quasi-

twisted (QT) Z
4
 codes have also been constructed [17]. Despite all this research, no database

of best known quaternary codes is available. The development of such a table has been started
in [5]. We now have compiled a database of quaternary codes. It is available at
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http://Z4Codes.info/ and it is being updated continually. Unlike the tables at [15], we do not
overwrite the existing entries when they are improved but rather keep both the old and the new
results. This strategy is chosen primarily based on the fact that several different metrics on
quaternary codes, i.e. Hamming, Euclidean and Lee distance, have been considered by the
researchers. Moreover, for the sake of easier communication, we have decided to provide
researchers with administrative privileges that would allow them to add their new results to the
table, as well as edit the existing entries. Accounts can be acquired by contacting the database
editors via email.

In addition to the creation of the database, we have also devised and implemented some
search algorithms to find new quaternary codes. The paper also describes and reports the
results of these searches. One of the search methods we consider in this paper is the further
exploration of the class of quasi-cyclic codes, which has been the source of many of the new
codes discovered in recent years. The other method is called the “progressive dimension
growth” (PDG) which is introduced recently in [4] for fields. In our work, it is modified for the
ring Z

4
 and the Lee metric. Finally, extending some of the ideas behind PDG, we implemented

a new algorithm called  “genetic code search” (GCS) that has produced better results than
PDG over Z

4
. The following sections give more information about the algorithms We have

used MAGMA for all computations.

2. BASIC FACTS ON QUATERNARY CODES

A code C of length n over Z
4
 is a subset of . C is a linear code over Z

4
 if it is an additive

subgroup of , hence a submodule of . In this paper we will consider only linear codes
over Z

4
. An element of C is called a codeword and a generator matrix is a matrix whose

rows generate C. The Hamming weight w
H
(x) of a vector x = (x

1
, x

2
, . . . , x

n
) in  is

|{i : x
i
 ≠ 0}|. The Lee weight w

L
(x) of a vector x is  min{|x

i
|, |4 − x

i
|}.

The Hamming and Lee distances d
H
(x, y) and d

L
(x, y) between two vectors x and y are

w
H
(x − y) and w

L
(x − y), respectively. The minimum Hamming and Lee weights, d

H
 and d

L
, of

C are the smallest Hamming and Lee weights, respectively, amongst all non-zero codewords
of C.

The Gray map  is the coordinate-wise extension of the function from Z
4

to  defined by 0 → (0, 0), 1 → (1, 0), 2 → (1, 1), 3 → (0, 1). The image, φ(C), under the Gray

map of a linear code C over Z
4
 of length n is a (in general non-linear) binary code of length 2n.

The Gray map is an isometry from (  ,w
L
) to (  ,w

H
). Therefore, the minimum Hamming

weight of φ(C) is equal to the minimum Lee weight of C.
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Two codes are said to be equivalent if one can be obtained from the other by permuting
the coordinates and (if necessary) changing the signs of certain coordinates. Codes differing
by only a permutation of coordinates are called permutation-equivalent. Any linear code C
over Z

4
 is permutation-equivalent to a code with generator matrix G of the form

(1)

where A
1
, A

2
, B

1
, and B

2
 are matrices with entries 0 or 1 and I

k
 is the identity matrix of order k.

Such a code has size . The code is a free module if and only if k
2
 = 0. If C has length n

and minimum Lee weight d
L
, then it is referred to as an [n, 4k12k2, d

L
]-code.

2.1 CYCLIC CODES OVER Z4

A cyclic code over Z
4
 is a Z

4
-linear code which is invariant under cyclic shifts where the

cyclic shift of an m-tuple (x
0
, x

1
, . . . , x

m−1
) over Z

4
 is the m-tuple (x

m−1
, x

0
, . . . , x

m−2
). Similarly

to the case of finite fields, cyclic codes over Z
4
 of length n are ideals in the ring  under

the usual identification of vectors with polynomials. Although algebraically cyclic codes have
the same structure over fields and over Z

4
 (ideals in a factor ring), the fact that Z

4
[x] is not a

unique factorization domain makes it more challenging to find all cyclic codes over Z
4
. For

instance, computer algebra systems (such as Magma and Maple), cannot directly provide
factorizations of xn − 1 for an arbitrary n. When n is odd, it is easier to obtain a factorization of
xn − 1 and hence to find all cyclic codes of length n. For an even n, the situation is much harder.
In fact, the factorization is not unique in that case. In this paper we consider only cyclic codes
of odd length over Z

4
. For the case of odd n some of the most important facts about ideals of

the relevant ring and the factorization of xn −1 are summarized below, and they can be found
in [21], [25] or [27]. For the case of even n, we refer the reader to [1],[2], and [3].

For an odd positive integer n, xn − 1 can be factored into a product of finitely many
pairwise coprime basic irreducible polynomials over Z

4
. Also, this factorization is unique

up to ordering of the factors [21, 27]. In fact, we have the following: if f
2
(x)|(xn − 1) in

Z
2
[x] then there is a unique, monic polynomial f(x) ∈ Z

4
[x] such that f(x)|(xn − 1) in Z

4
[x]

and  = f
2
(x), where  denotes the reduction of f(x) modulo 2 [27]. The polynomial f(x)

is called the Hensel lift of f
2
(x). There are well−known methods of finding this polynomial,

such as Graeffe’s method [27]. Therefore, there is a one−to−one correspondence between
irreducible factors of xn − 1 over Z

2
 and irreducible factors of xn − 1 over Z

4
.
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Once the factorization of xn − 1 over Z
4
 is obtained, the ideals of R :=  can be

determined. For an odd positive integer n, any ideal I of the ring R has a generator of the form
a I = 〈 f(x)h(x), 2f(x)g(x)〉 where f(x)g(x)h(x) = xn − 1 [21, 27]. Moreover, |I| = 4deg g(x)2deg h(x).
It follows that the number of cyclic codes of length n is 3r, where r is the number of irreducible
factors of xn − 1 [21].

Finally, it can be shown that any ideal of R, for an odd n, is a principle ideal, with a
generator of the form p(x) = f (x)h(x) + 2f (x) (or equivalently p(x) = f (x)h(x) + 2f (x)g(x))
where f (x), g(x), h(x) are as above [21, 27].

Remark 1: When xn − 1 has r irreducible factors over a field, the total number of cyclic
codes is 2r. We have a larger number over Z

4
 due to the existence of non−free codes (over a

field all codes are free).

Remark 2: The generator polynomial p(x) of an ideal of R described above does not
necessarily divide xn − 1. For example, let n = 3, f(x) = 1, and h(x) = x − 1, then p(x) = x + 1 and

p(x)  (x3 − 1). When h(x) = 1, p(x) = 3f (x) = −f(x) does divide xn − 1. It is shown in [7] that
the cyclic code generated by p(x) is a free module if and only if p(x) divides xn − 1.

2.2. Quasi-Cyclic Codes over Z
4

Much research has focused on the class of quasi-cyclic (QC) and the related class of quasi-
twisted (QT) codes, and many new codes over small finite fields have been discovered within
these classes. Some of these results can be found in [6],[12, 13],[16] and [24]. In addition to
the case of a field, QC codes over rings, especially over Z

4
, have been studied as well. QC

codes over Z
4
 are first studied in [7], where a number of “good” quaternary codes are obtained.

A quaternary linear code C with parameters  (where d is the Lee weight) is called
good if d > d′, where d′ is the minimum distance of a best known binary linear code of length
2n, and dimension 2k

1 
+ k

2
, i.e. if the Gray image of C has a larger minimum distance than the

comparable binary linear code. Similarly, a quaternary code will be called decent if its Gray
image has the same parameters as the best known binary  code (i.e., if d = d′). The reason for
this type of comparison is that even though the Gray image of a quaternary code is most likely
non-linear, we do not have any other means of testing how good the parameters of a Z

4
 code

are due to the facts that

a) the table [18] is much smaller than the tables for binary linear codes (it only goes up to
minimum distance 29), and

b) there are no extensive tables of quaternary codes.
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We believe that the table presented in this paper will meet a need in this area. The
researchers are welcome to report and enter their codes to this database.

Next, we summarize some of the basic facts concerning the structures of QC codes. A
more detailed treatment can be found in [6] for QC codes over fields, and in [7] for QC codes
over Z

4
. A linear code over a ring is called l − QC if it is invariant under the cyclic shift by l

positions. Algebraically, an l − QC code of length n = ml over a ring R can be viewed as an
R[x]/〈xm − 1〉 submodule of (R[x]/〈xm − 1〉)l. Then an r-generator QC code is spanned by r
elements of (R[x]/〈xm − 1〉)l. In this paper, as is the case in most of the literature, we restrict
ourselves to 1-generator QC codes. The following is a generalization of an important result
about 1-generator QC codes [6], [7] that has been used in many of the recent work [12],[13].
The ring R can be a finite field or Z

4
.

Theorem 2.1: Let C be a 1-generator l − QC code of length n = ml with a generator
of the form:

(2)

where  and   for

all 1 ≤ i ≤ l. Then l · d ≤ d(C), where d is the minimum distance of the cyclic code generated
by g(x), and d(C) is the minimum distance of C. Moreover, the dimension of C is equal to
the dimension of the cyclic code generated by g(x).

In terms of generator matrices, the QC codes can be characterized as follows.

Let

(3)

An (m × m) matrix of the type G
0
 is called a circulant matrix of order m or simply a

circulant matrix.

It is well-known that the generator matrices of QC codes can be transformed into blocks
of circulant matrices by a suitable permutation of columns. Therefore, any 1-generator QC
code is permutation equivalent to a linear code generated by a matrix of the form

where each G
k
 is a circulant matrix of the form (3).
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2.3 A NEW QC Z4 CODE

Based on the search results for new codes over fields and over Z
4
, it is natural to search for

new quaternary codes in the class of QC codes over Z
4
. Although this kind of search is carried

out in [5],[7], and [23], a more complete search is still possible. For each odd integer m up to
length 63, we produced all cyclic codes i.e., their generators, p(x),(free or non-free), based on
the results described in section II-A. We then searched for new QC codes of the form (p(x),
p(x) f

1
(x), . . . , p(x) f

l − 1
). In most cases we used l = 2 (in a few cases we also let l = 3, 4). Our

search revealed a good (and new) quaternary QC code with parameters [86, 41520, 55], whose
Gray image (which is non-linear) is a binary (172, 230, 55)-code. The best known binary linear
code of length 172, and dimension 30 has minimum distance 54. The generators and the Lee
weight enumerator of this code are as follows:

g(x) = x15 + 3x14 + 2x13 + 3x12 + 2x9 + 2x8 + 2x7 + 2x6 + x3 + 2x2 + x + 3, f(x) = x28 + x27 + 3x26 +
2x25 + x24 + 2x22 + 3x21 + x20 + 3x19 + 2x18 + x17 + x16 + 2x15 + 3x14 + 2x13 + x12 + x11 + 2x10 + 3x9

+ x8 + 3x7 + 2x6 + x4 +2x3 + 3x2 + x +1 h(x) = 1 so that g(x) f (x) h (x) = x43 − 1.

Let  then the polynomial p(x) generates a free quaternary
cyclic code with parameters [43, 41520, 16]. The search revealed that with the choice of
f
1
 = 2x13 + x12 + x10 + 2x9  + 3x8 + x7+ 3x6 + 3x5 + 3x4 + 2x2 + x, the 1-generator QC code

generated by (p(x), p(x)f
1
(x)) has parameters [86, 41520, 55]. Its Lee weight enumerator is

given below where the bases are weights, and exponents are number of codewords of that
weight
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3. QUATERNARY CODES FROM INVERSE GRAY MAP

The Gray map is usually used to obtain binary codes (usually non-linear) from quaternary
codes (usually linear). However, we can also use its inverse to obtain quaternary codes (most
likely non-linear) from a given binary code. If we take a binary code with parameters
[2n, 2k, d] then the inverse Gray map yields a quaternary code (which is most likely to be
non-linear) with parameters (n, 4k, d). Taking advantage of existing databases for binary linear
codes, we considered quaternary codes obtained this way from best known binary codes. This
method contributed thousands of (non-linear) codes to the database.

4. GENETIC CODE SEARCH

It is well known that computing minimum distance of an arbitrary linear code is an NP-hard
problem [26]. This result gives an insight about why there does not exist an
efficient, general purpose search algorithm to find good linear codes. All known search methods/
algorithms for linear codes work well in some special cases. Recently, a new search algorithm
has been introduced that works well for most parameter ranges over small fields [4]. In a large
number of cases the algorithm produced linear codes with best known parameters, and in
several cases generated new codes (“record breakers”). In our work we adopted this algorithm
for the ring Z

4
 and the Lee metric. We refer the reader to [4] for further details. Originally, as

implemented for the field case, PDG did not work very well for Z
4
. Therefore, we introduced

changes inspired by genetic algorithms. We start off with an empty code and gradually expand
it. At each step we examine multiple mutations of a single generator matrix. Thus GCS is not
a typical genetic algorithm, in the sense that it operates on a single element and crossover
between generator matrices is not considered. Here we present the details of GCS for free
codes, i.e. K = K

1
, K

2
 = 0.

Initialize Set the input parameters and initialize sets and variables.

Set N,K,T;

Use the binary record table to determine D;

BitShifts = {1, 2, 3};

S = {};

G = [0]; t = 1; k = 1;
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The length N and dimension K are the two input parameters. Based on their values we
determine a desired Lee minimum distance D using the tables of best known binary codes. In
addition, we also specify a small integer T, 1 ≤ T ≤ N − K. Greater T implies a better chance for
the construction of a good code but that benefit comes at the expense of increased computational
time. The output of the algorithm is a linear code over Z

4
 of length N and minimum Lee

distance d ≥ D.

The search for a suitable mutation matrix G
old

 presents the heaviest computational
task. As the size of the set S increases with successive dimensions, so does the number of
possible mutation matrices. This is a key difference between PDG and GCS. The process
terminates either when a suitable mutation matrix is found or the specified level of T is
reached.

General GCS Algorithm

Initialize

while ((t ≤ T) and (k ≤ K)) do

S = S  {(K + kN), . . . , ((k + 1) N − 1)};

Gold = [0]; Gnew = [0];

Gtemp = [0]; Gold[k][k] = 1;

d = 1;

Search for a suitable matrix Gold

if (d ≥ D) then

G = G + Gold;

k = k + 1;

end if

end while
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Below is a table of small quaternary codes obtained with GCS whose Lee distances
are equal to the minimum Hamming distances of the corresponding binary linear codes. We
call such a code “decent”. This is significant, considering that all binary linear codes up to
length 32 are optimal. Based on our experience and the results from the literature, constructing
decent codes is a challenging task. Besides, many of the decent Z

4
 codes may very well be

regarded new.

Search for a suitable matrix Gold

while ((t ≤ T) and (d < D)) do
increment_t = true;
RedundancyShifts = The set of all subsequences
of BitShifts of length t;
Positions = The set of all subsets of S of size t;
for p in Positions do
Gnew = Gold;
for r in RedundancyShifts do
for i = 1 to t do
Gnew[p(i) ÷ N][(p(i) mod N) + 1] =
= Gold[p(i) ÷ N][(p(i) mod N) + 1] + r(i);

end for
G1 = G + Gnew; C =< G1 >;
if (MinimumLeeWeight(C) > d) then

d = MinimumLeeWeight(C);
Gtemp = Gnew;
increment_t = false;
break p;

end if
end for

end for
Gold = Gtemp;
if increment_t then

t = t + 1;
end if
end while
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5. CONCLUSION AND FUTURE WORK

In this work, we introduce a new database of Z
4
 codes that is available online that can be

conveniently updated by researchers. The database has been populated using several different
search methods. We present a survey of some of the recent and promising methods to find
new quaternary codes. Search with one of these methods has yielded a good quaternary code.
We also introduce a new search method that has yielded many decent codes. We invite
researches to search for new quaternary codes using known methods or devising new ones,
and update the database with any new codes discovered. There is much room for improvement
on this database.
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